6 research outputs found

    HOP Queue: Hyperspectral Onboard Processing Queue Demonstration

    Get PDF
    The HOP Queue (Hyperspectral Onboard Processing Queue) demonstration leverages emerging COTS AI accelerators and GPUs to perform on-board processing of hyperspectral imagery data, with the aim of providing near- real time conservation-oriented data and metrics from Low Earth Orbit (LEO). These include forest health, fire detection, and coastal water health. Phase 1 of this project is currently underway, including a completed lab demonstration of this technology and ongoing flight testing. The data from this mission will support Northrop Grumman’s enterprise “Technology for Conservation” campaign and will be provided to NASA’s Surface Biology and Geology (SBG) organization, as well as other conservation efforts

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 92-22768U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Army - Office of Scientific Research Grant DAAL01-92-6-0197U.S. Navy - Office of Naval Research Grant N00014-89-J-1207Alfred P. Sloan FoundationU.S. Navy - Office of Naval Research Grant N00014-90-J-1642U.S. Navy - Office of Naval Research Grant N00014-94-1-080

    Basic Atomic Physics

    Get PDF
    Contains reports on five research projects.National Science Foundation Grant PHY 89-19381National Science Foundation Grant PHY 92-21489U.S. Navy - Office of Naval Research Grant N00014-90-J-1322Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant PHY 89-21769U.S. Army - Office of Scientific Research Grant DAAL03-92-G-0229U.S. Navy - Office of Naval Research Grant N00014-89-J-1207U.S. Navy - Office of Naval Research Grant N00014-90-J-164

    Basic Atomic Physics

    Get PDF
    Contains reports on four research projects.Joint Services Electronics Program Contract DAAL03-92-C-0001National Science Foundation Grant PHY 89-19381U.S. Navy - Office of Naval Research Grant N00014-90-J-1322National Science Foundation Grant PHY 89-21769U.S. Army - Office of Scientific Research Contract DAAL03-89-K-0082U.S. Navy - Office of Naval Research Grant N00014-89-J-1207U.S. Navy - Office of Naval Research Grant N00014-90-J-164

    The kicked Rydberg atom: Non-linear dynamics and manipulation of atomic wavefunctions

    No full text
    The response of rubidium Rydberg atoms with principal quantum number n = 390 to one or more half-cycle electric field pulses (HCPs) with durations Tp much less than the classical electron orbital period Tn is investigated. High-n atoms subject to a series of HCPs provide a new paradigm, the "kicked atom" for the study of non-linear dynamics in Hamiltonian systems. For certain kick frequencies, dynamical stabilization is observed which corresponds to localization in phase space of the electronic state. The evolution of this localized state is probed with HCPs. A short HCP is used to examine the momentum distribution and a new technique for measuring the spatial distribution of the electron that uses a longer-duration fast-rising is demonstrated. Similar pulses also form the basis of a new approach to the manipulation of atomic ℓ-state distributions. The experimental data are compared with the results of classical trajectory Monte Carlo simulations. In all cases good agreement between theory and experiment is observed demonstrating that quantum/classical correspondence holds at high-n

    Ionization of Rydberg atoms by half-cycle pulses: Effect of pulse shape and rise time

    No full text
    The ionization of potassium np Rydberg atoms with n388n\sim388 by pulsed unidirectional electric fields, termed half-cycle pulses (HCPs), with various well-characterized shapes (rectangular, triangular, and sawtooth) and durations T\sb{p} comparable to the classical electron orbital period T\sb{n} is investigated. The experimental results are compared to classical trajectory Monte Carlo (CTMC) simulations and the classically-scaled results of quantum calculations undertaken at n=5.n=5. The data show that in the intermediate regime, T\sb{p}\sim T\sb{n}, the threshold field for ionization becomes sensitive to the shape and rise time of the HCP, increasing with increasing rise time. For each pulse shape, the agreement between the experimental measurements and both the CTMC and quantum calculations is very good
    corecore